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An exact analytical solution for the stationary reaction front propagation in an inert porous media is
obtained in the approximation of the narrow reaction zone. It is assumed that the similarity of the tem-
perature and concentration fields does not take a place. The applicability of the solution found for gas and
solid disequilibrium temperature distributions in the reactants region and behind the reaction front
approximate evaluations is illustrated with the help of one special example.

� 2009 Published by Elsevier Ltd.
1. Introduction

Recently, the combustion of gases in porous media has been the
focus of numerous researchers working in the field of combustion
and the environment due to its interesting industrial applications
[1–4] such as oil extraction, infrared burners and heater develop-
ment, ceramic materials synthesis, porous catalysts, grounds pol-
luted by toxic organic shedding recovery, destruction of volatile
organic compounds (VOC) in air, hydrogen production, diesel en-
gines, and pollution control.

The process by which the region of exothermic chemical reac-
tions propagates along inert porous media must be viewed within
the framework of combustion waves in these types of media, as
shown schematically in Fig. 1. It is known from the literature
[5–7] that during gas mixture combustion in inert porous media,
combustion waves that move upstream or downstream along the
system can be seen. The direction of these movements depends
generally on the physical properties of both solid and gas as well
as on initial speed, temperature, and excess air of the mixture. Con-
jugating these parameters, wave speeds achieved are much lower
than those of the gas, and the temperature profiles show a very
pronounced maximum in the reaction region.

Due to the active participation in this process of both the porous
medium and the reacting gas, three characteristic regions can be
identified inside the porous medium. There is a region in front of
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the combustion region where reacting gases are mixed in naturally
and preheated using heat lost by the porous medium. At the en-
trance of this region, the temperature, the gas speed, and the
equivalence ratio are controlled. In the same region of the porous
medium, 0 < z < l1, the gaseous mixture is ignited as a result of pre-
heating of a porous medium zone several centimeters in length by
an external heat source (an electric resistance, for example).

The second region is a luminous tight one, and it represents the
chemical reaction region which moves in the same direction or
against the gas flow, and it is here where a huge amount of enthal-
py is absorbed by the porous medium and directed to the first re-
gion where the fresh mixture enters. Because of the large specific
surface of the porous medium, this last region delivers energy to
the incoming gas mixture which is transferred by convection to
the reaction region. Thus, heat regeneration occurs which implies
an enthalpy excess at the chemical reaction region and a partial in-
crease of the front temperature, which can exceed the adiabatic
temperature [8,9]. Moreover, mass transport by diffusion and heat
transport by thermal radiation are considerable at this region.

Finally, there is a third region which is located forward of the
front and has combustion products, which actively exchanges heat
by convection with the porous medium, leaving the system at al-
most ambient temperature. These systems are characterized by
the presence of two dynamic fronts: the chemical reaction front
and the high-temperature front. As a result of the adequate selec-
tion of geometric properties, dynamic flows, and thermal parame-
ters, the two fronts can superimpose and intensify reciprocally.

Today, gas combustion in inert porous media is intensively
studied. There are numerical [10,11], analytical [12,13], and
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Nomenclature

c specific heat (J/kg K)
D mass diffusion coefficient (m2/s)
Ea activation energy (J/mol)
k frequency factor (1/s)
Le Lewis number
Q enthalpy of combustion (J/kg)
T temperature (K)
Tm maximum temperature in the reaction front (K)
T0 environment temperature (K)
t time (s)
u gas velocity (m/s)
Vn normal component of the combustion front velocity (m/

s)

Greek symbols
a heat exchange coefficient (W/m3 K)

b heat loss to the environment (W/m3 K)
k thermal conductivity (W/m K)
e porosity
g fuel mass fraction
q density (kg/m3)

Subscripts
0 initial condition
g gas
s solid

Superscripts
0 stationary conditions

Reaction Region Porous Medium 
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Fig. 1. Scheme of the physical problem considered.
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experimental studies [9,14,15] of the topic, where relations are
established as formulas or graphics between major properties of
a combustion wave such as the highest temperature, the speed,
and the wave direction of motion and the two-phase system phys-
ical properties and conditions at the inlet. In spite of this, there are
relatively few studies of the mixture ignition temperature in the
two-phase system and the thickness of the chemical reaction re-
gion. Normally, to ignite a mixture in the numerical studies [16],
a temperature not lower than that required is imposed on a region
of several centimeters of extension in the inert porous medium.

However, in practice it is very important to know the precise
value of this temperature, because higher temperatures compro-
mise solid materials and originate toxic gases. In analytical solu-
tions, the combustion region thickness is normally ignored in
order to be able to integrate the energy equation, in which the right
side has an extremely non-linear term.

Akkutlu and Yortsos [17] studied the properties of forward
combustion fronts propagating at a constant velocity in the pres-
ence of heat losses. Heat losses are assumed to be relatively small
and are expressed using two models: (1) a convective type, using
an overall heat transfer coefficient; and (2) a conductive type, for
heat transfer by transverse conduction to infinitely large surround-
ing formations. As the main results they develop expressions for
temperature and concentration profiles and the velocity of the
combustion front, under both adiabatic and non-adiabatic condi-
tions, in analytical form. An explicit expression is also obtained
for the effective heat transfer coefficient in terms of the reservoir
thickness and the front propagation speed. This coefficient is not
only dependent on the thermal properties of the porous medium
but also on the front dynamics.

Kennedy et al. [18] described the chemical structures of meth-
ane–air filtration combustion waves in a range of equivalence ra-
tios from 0.2 to 2.5. Downstream, upstream, and standing waves
were observed in the experiments. For equivalence ratios in the
range of 0.45–1.7 at an inlet velocity of 0.25 m/s, downstream
wave propagation occurred, corresponding to the super adiabatic
combustion. With further increase (>1.7) or decrease (<0.45) of
the equivalence ratio, the propagation regime changed to upstream
and the maximum temperature in the packed bed was no longer
higher than the adiabatic temperature for the specific inlet mix-
tures. The accompanying numerical simulation considered a fully
developed steady combustion wave using a one-temperature
model.

Shkadinsky et al. [19] showed the existence of both one and two
stationary reaction zone structures which arise in filtration com-
bustion in a moving porous medium. Using the narrow reaction
zone approximation, they derive approximate analytical expres-
sions for the principal combustion characteristics, including com-
bustion temperature, the temperature and depth of solid
conversion at the first reaction zone, the locations of the reaction
zones, the inlet and outlet oxidant fluxes, as well as profiles for
the spatial distributions of pressure, temperature, and depth of
conversion, corresponding to the stationary reaction zone
structures.

Foutko et al. [12] present an analytical solution of this combus-
tion wave assuming that the reaction speed in the combustion re-
gion is infinite and that the longitudinal extension of said region is
null. Nevertheless, the construction of an analytical solution is here
achieved without the help of those last two assumptions. It is
known [20,21] that the greater the extension of the combustion re-
gion, the higher the production of NOx at the front, and conse-
quently it would be interesting to find out about the dependence
of the thickness of that region on the rest of the physical parame-
ters involved in the studied problem.

The conditions for the propagation of the steady combustion
front in terms of the governing parameters for filtration combus-
tion of a solid fuel in a reservoir that consist of two layers of dif-
ferent permeability and thickness have been investigated by
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Akkutlu and Yortsos [22]. They found that heterogeneity reduces
the front temperature in the high-permeability layer and uncou-
ples the propagation of the combustion front in the two layers.

Recently, Bubnovich et al. [23] presented analytical solutions
for the temperature and mass fractions of methane/air mixture
combustion in a packed bed. The solutions were built in three
different regions: the preheating region, the reaction region,
and the combustion products region. Based on the solutions,
the extension of the reaction region, the ignition temperature,
and the combustion wave speed were also predicted. In their
analysis a one-temperature model was used and the methane
oxidation mechanism was reduced to a global chemical reaction
in a single step. However, it is important to consider the situa-
tions in which the interfacial heat transfer coefficient has a spe-
cific value and affects the characteristics of the combustion
wave. Therefore, a study was made of self-sustaining combustion
waves by Bubnovich and Toledo [24] during the filtration of lean
methane–air mixtures in inert porous media using the two-tem-
perature approximation that considers the characteristics of the
reaction region.

Jun-Rui Shi et al. [25] investigated combustion wave charac-
teristics of lean pre-mixtures in a porous medium burner. Based
on the flame sheet assumption, a relationship between the com-
bustion wave speed and the maximum combustion temperature
was given. Then an approach from the laminar premixed flame
theory is applied and the entire flame zone is divided into a pre-
heating region and a reaction region, and treated separately. In
this way the second relationship between the two parameters
is deduced. Thus, a closed analytical solution for the combustion
wave speed and the maximum combustion temperature is ob-
tained. Over a wide range of working conditions, the numerical
predictions and theoretical results show qualitative agreement
with experimental data available from the literature. The results
reveal that the mechanism of super adiabatic combustion is
attributed to the overlapping of the thermal wave and combus-
tion wave under certain conditions.

The study of combustion, including combustion in porous med-
ia, usually considers that mass diffusion and heat conduction are
similar [26] in cases in which the Lewis number Le is equal to
one. However, in a real situation, depending on the gas mixture
composition, Le can deviate from unity, and that can lead to some
interesting phenomena [27]. There are analytical approximations
in simple combustion models for gases that take into account the
difference between thermal conduction and mass diffusion coeffi-
cients [28]. Because analytical solution for combustion in porous
media are not found in the open literature, this paper present an
original exact analytical solution to the stationary combustion
wave propagation in a porous medium, based on the narrow reac-
tion approximation.
2. Problem formulation

The mathematical model of gas combustion in a porous med-
ium for the physical situation presented in Fig. 1 is based on a
two-temperature formulation [12,24]. The assumptions used in-
clude that the chemical reaction can be described by a one-step
reaction scheme (reactants–product), the reaction front is plane,
and the gas mixture properties do not depend on the temperature.
Porous media filled in the packed bed are non-catalytic, homoge-
neous, and optically thick. The working gas is non-radiating, the
gas flow in the porous medium is laminar, and pressure loss in
the burner is neglected. In this case the mathematical formulation
of the problem includes the energy equations for the gas and the
solid phases, as well as the conservation equation for the chemical
species, respectively:
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where T is the temperature, g is the fuel mass fraction; x is the space
coordinate in the direction of the front propagation; a is the heat ex-
change coefficient between the gas and solid phases; u is the gas
velocity, q, c, k are density, heat capacity, and thermal conductivity;
D is the mass diffusion coefficient; e is the porosity; and k, Ea, Q are
the frequency factor, activation energy, and enthalpy of combus-
tion, respectively; the coefficient b describes the heat loss to the
environment by thermal radiation and natural convection, T0 is
the ambient temperature, and the subscripts s and g are related,
to the solid and gas phase, respectively.

Assuming, that the reaction front is narrow, a conjugate formu-
lation with boundary condition between the reactants and prod-
ucts can be built. Supposing, that the reaction front moves at
speed Vn, the mathematical formulation (1)–(3) becomes the
following:
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These equations are valid before (x < 0) and after the reaction front
(x > 0), where Vn is the normal component of the combustion front
velocity.

In the reaction front, at x = 0, between the reactants and prod-
ucts, the following boundary conditions are valid:
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The following initial and boundary conditions are imposed:

t ¼ 0; x ¼ 0 : Tg ¼ T0; Ts ¼ T0; g ¼ 1: ð10Þ
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The mathematical model can be formulated in terms of dimension-
less variables using the following scales,
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Ts � T0
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n

j
t; ð12Þ

where Tm is the maximum temperature in the reaction front, which
is found later, and j ¼ kg

cgqg
is the thermal diffusivity. Then, the non-

dimensional mathematical model takes the form
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The boundary conditions are:
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are the dimensionless problem parameters.
In a general case it is necessary to find the stationary solutions

and to investigate their stability to small perturbations. In this pa-
per we restrict the investigation to the stationary problem.

3. Stationary problem solution

The stationary problem is obtained when the time derivatives
set are equal to zero in Eqs. (13)–(15). Assuming that the sta-
tionary front velocity Vn ¼ V0

n, the stationary problem in the
mathematical model, for n < 0 and n > 0, is defined by the follow-
ing equations:
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and the boundary conditions in the interface between the reactants
and the products (for n = 0) are
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A system of the three linear, second order, ordinary differential
equations (22)–(24) is obtained. A more convenient form for the
mathematical model can be found introducing the new additional
notation
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: ð30Þ

As a result, a conjugate model is obtained that includes a system of
the six ordinary first order differential equations (31)–(36):
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which can be presented in a vectorial notation:
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where the unknown vector and the coefficient matrix are:
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respectively, with the following symbols:
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Eqs. (33) and (34) are independent from the rest of the system and
can be solved separately. Therefore, the resulting four residual
equations (31), (32), (35) and (36) of the system have the following
expression for the coefficients matrix:
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The characteristic equation, defined by

A� kE ¼ 0 ð42Þ

allows finding the existence condition of the non-trivial solution for
the differential equations system. Calculating the determinant, the
result obtained is
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The characteristic equation (43) has, naturally, four roots, which are
the eigenvalues of the matrix (41). The full matrix (39) has two
additional eigenvalues that can be calculated in an exact way:

k ¼ 0; k ¼ 1þ �u
Le

: ð44Þ

In the particular case, when A = 0, the heat exchange between the
solid and gas phases is absent, and hence Eq. (43) is reduced to
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Each pair of roots of this equation corresponds to the two indepen-
dent stationary thermal conductivity problems in the gas

ðk1 ¼ 0; k2 ¼ 1þ �uÞ and the solid k3;4 ¼ Kc
Kk

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Assuming that D
1þ�u ¼ 1, the maximum temperature in the front can

be found.
In the general case, when A – 0, the four previous equations

cannot be separated. If all roots of the characteristic equation are
real values, the eigenvector ai of matrix A with components aij cor-
responds to each eigenvalue ki. Then the columns aiexp(kin) form
the fundamental solution system. In this case, the general solution
of the ordinary differential equation system can be written in the
form

yi ¼ C1a1iexpðk1nÞ þ C2a2iexpðk2nÞ þ C3a3iexpðk3nÞ þ C4a4iexpðk4nÞ;
i ¼ 1;2;3;4: ð49Þ

Eq. (49) contains four arbitrary constant Ci and represents a solution
for a chemical species yi. To find the eigenvectors, it is necessary to
solve the four-equation system for each eigenvalue ki:

ðA� kiEÞai ¼ 0: ð50Þ

In order to solve the problem, the cofactor Aij in the first column of
the matrix (A � kiE) can be used as the eigenvalue component ai:

Aij ¼ ð�1ÞiþjMij; ð51Þ

where the minor Mij is the determinant of the sub matrix obtained
by deleting row i, column j of the matrix.

The analysis shows that in this case the cofactors in the second
column of the matrix are the most desirable. Therefore,
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Even and odd values of the coefficients are related by the next
equation:

ai2 ¼ kiai1; ai4 ¼ kiai3: ð53Þ

The analysis shows that the characteristic equation can have com-
plex roots with positive and negative real parts; and it can also have
multiple roots, in which case, if they exist, the problem needs to be
viewed in a special way. Obviously, in the region of variation of the
physical parameters of the mathematical model all the roots are
real: two of them are negative (k1, k2 < 0) and two are positive (k3,
k4 > 0).

Then, considering the conditions in the reactants and in the
products, a general solution of the following form is obtained:

h�g ¼ C�3 a31expðk3nÞ þ C�4 a41expðk4nÞ;
h�s ¼ C�3 a33expðk3nÞ þ C�4 a43expðk4nÞ;
hþg ¼ Cþ1 a11expðk1nÞ þ Cþ2 a21expðk2nÞ;
hþs ¼ Cþ1 a13expðk1nÞ þ Cþ2 a23expðk2nÞ:

ð54Þ

Using the boundary conditions in the front (25)–(29), the system of
equations to determine the integration constants is

C�3 a31 þ C�4 a41 ¼ Cþ1 a11 þ Cþ2 a21 ¼ 1;

C�3 a33 þ C�4 a43 ¼ Cþ1 a13 þ Cþ2 a23;

C�3 a31k3 þ C�4 a41k4 ¼ Cþ1 a11k1 þ Cþ2 a21k2 þ D;

C�3 a33k3 þ C�4 a43k4 ¼ Cþ1 a13k1 þ Cþ2 a23k2;

ð55Þ

where the temperature in the front is equal to one in accordance
with the choice of the dimensionless variable. Since there are four
integration constants and five boundary conditions in the interface
between the reactants and the products, the expression for param-
eter D can be found, and hence the maximum temperature in the
reaction front, Tm, can be determined.

With the help of Eqs. (52) and (53), system (55) may be pre-
sented in the following form:

C�3 a3 þ C�4 a4 ¼ Cþ1 a1 þ Cþ2 a2 ¼ 1;

C�3 þ C�4 ¼ Cþ1 þ Cþ2 ;

C�3 a3k3 þ C�4 a4k4 ¼ Cþ1 a1k1 þ Cþ2 a2k2 þ D;

C�3 k3 þ C�4 k4 ¼ Cþ1 k1 þ Cþ2 k2;

ð56Þ

where

ai ¼ �k2
i þ

Kc

Kk
ki þ a: ð57Þ

This equation system can be solved in an explicit form, to ob-
tain
The solution for the reactant concentration in this stationary
problem takes the form of Eq. (47), as it is the simplest case
when A = 0.

Assuming Kc � 1, Kk � 100, �u � �103, that is originated when
|Ug/Vn| >> 1, cgqg � csqs, kg << ks, an interesting limit case is ob-
tained, in which the solution can be presented in the form



Table 1
Values of the parameter set for the mathematical model solution.

Variant A B �u k1 k2 k3 k4

1 0.75 0.1 100 �1.664e-1 �1.86e-2 50.166 101
2 0.5 0.1 100 �1.663e-1 �1.237e-2 50.166 101
3 0.25 0.1 100 �1.662e-1 �6.188e-3 50.166 101
4 0.15 0.1 100 �1.661e-1 �3.713e-3 50.166 101

5 0.75 0.5 100 �8.202e-1 �1.856e-2 50.82 101
6 0.75 0.3 100 �4.954e-1 �1.856e-2 50.495 101

7 0.75 0.1 �100 �99 �1.664e-1 1.894e-2 50.166
8 0.75 0.1 �80 �79 �1.664e-1 2.374e-2 50.166
9 0.75 0.1 �50 �49 �1.664e-1 3.8265e-2 50.166
10 0.9 0.1 �50 �49 �1.664e-1 4.592e-2 50.166
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h�g ¼ C�3 a31 þ C�4 a41expðk4nÞ;
h�s ¼ C�3 a33 þ C�4 a43expðk4nÞ;
hþg ¼ Cþ2 a21expðk2nÞ;
hþs ¼ Cþ2 a23expðk2nÞ:

ð59Þ

The analysis of the characteristic equation gives

jk1j >> jk2j; jk4j >> jk3j:

Since the equalities in Eq. (59) hold near the vicinity of the reaction
front, the additional condition is assumed to apply to the reactants:

C�3 ¼ 0: ð60Þ

This can be verified by Eq. (59). Considering the estimates of the
physical parameters above, the result obtained is:

A2

eð1� eÞKk
<< 1 or

a2j3

eð1� eÞV4
nks

<< 1: ð61Þ

The following approximate characteristic equation roots values can
be used

k1 � 1þ �u � �u < 0; k2 �
1
2

Kc

Kk
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35 < 0;

k3 � �
A

eð1þ �uÞ > 0; k4 �
1
2

Kc

Kk
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35 > 0:

ð62Þ

In the case when �u � 103 > 0, we have that

jk2j << jk1j; jk3j >> jk4j;

and a general solution of the following type is obtained

h�g ¼ C�3 a31expðk3nÞ;
h�s ¼ C�3 a33expðk3nÞ;
hþg ¼ Cþ1 a11expðk1nÞ þ Cþ2 a21;

hþs ¼ Cþ1 a13expðk1nÞ þ Cþ2 a23:

ð63Þ

The condition

Cþ2 ¼ 0; ð64Þ

is necessary so that Eq. (63) can be used correctly for the products,
because

dhþs
dn

����
n!1
¼ lim

n!1
ðCþ1 a13k1expðk1nÞ þ Cþ2 a23k2Þ ¼ 0:

As a result, in this case, it is obtained that:

k1 �
1
2

Kc

Kk
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35 < 0; k2 � �

A
eð1þ �uÞ < 0;

k3 �
1
2

Kc

Kk
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35 > 0; k4 � 1þ �u � �u > 0:

ð65Þ

Now, it can be depict the stationary solution for the described cases.

4. Algorithm for the stationary solution

Using the parameters presented in [12,22,23]

e ¼ 0:4; qg ¼ 1:13; qs ¼ 3987 kg=m3; kg ¼ 0:073;

ks ¼ 6 W=ðm KÞ; cg ¼ 1160; cs ¼ 1300 J=ðkg KÞ;

we get
t� ¼
kg

V2
ncgqg

� 10�3 � 10�2 s; A ¼ at�
cgqg

� 1:56� 0:027;

Kk � 82:2; eð1� eÞKk � 19:73:

Therefore, in this case, when Kc/Kk � 50, the condition A2

eð1�eÞKk
<< 1

is a very good approximation for a qualitative analysis of the
problem.

The calculation algorithm is the following: using the values of
parameters A, Kc, Kk, e, are calculated the roots of the characteristic
equation in the way:

k1 �
1
2

Kc

Kk
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35; k2 � �

A
eð1þ �uÞ ;

k3 �
1
2

Kc

Kk
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

Kk

Kc

� �2
s24 35; k4 � 1þ �u � �u;

where

a ¼ BKc

ð1� eÞKk
þ A
ð1� eÞKk

: ð66Þ

The eigenvalues calculated for some values of the parameters
are presented in Table 1.

Now, using ki we can calculate the components of vectors ai

from Eq. (53) and the integration constants with the help of Eq.
(58). Expressions (54) allow the calculation of the temperature
for the solid phase and for the gas in the reactant region and in
the products region.

5. Analysis and discussion

The fuel mass fraction value before and after the reaction front
can be found from

g� ¼ 1� 1
1þ �u

exp
1þ �u

Le
n

� �
; gþ ¼

�u
1þ �u

: ð67Þ

According to these results it can be seen that the Lewis number has
no influence on the characteristics of the temperature field.

The mathematical model developed has been based on a flame
sheet approximation for the reaction zone, in which the combus-
tion front is treated as a delta function-like region for the reaction.
In this way the model provides a discontinuous jump in the gas
temperature that can be significantly different from the solid tem-
perature. The replacement of the reaction term by an energy re-
lease, of the Dirac delta type function [14,27], eliminates the
need for the use of an expression for the combustion rate. From
the physical point of view, the physical domain can be divided into
a pre-reaction and a post-reaction zone.

The slow speed of the combustion wave and the radiative heat
transfer which occurs in the solid tends to equilibrate major tem-
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perature differences. Even though the objective of this paper has
not been to study the effect of radiation, the model developed al-
lows: (a) an implicit interpretation of the role of radiation by re-
defining the total heat transfer coefficient by two terms: a convec-
tive and a radiative component, and (b) by changing the value of
the solid to gas thermal conductivity ratio, parameter Kk in Eq.
(21), in which ks is defined as the porous medium effective thermal
conductivity, that includes the influence of radiation, assuming an
optically thick region around the high-temperature zone in the bed
[12,14].

The stationary solution is graphically presented in Figs. 2 and 3.
Because the spatial scales before and after the reaction front, lo-
cated at n = 0, are very different, it is convenient to present the
temperature distribution before and after the reaction front in dif-
ferent pictures, (a) and (b). The dotted lines in these figures corre-
spond to the gas temperature and the continuous lines correspond
to the solid matrix temperature.

When �u > 0, the spatial scale in the reactants is lower than in
the products. For this case, the temperature distribution is pre-
sented in Fig. 2. Naturally, the gas temperature in the front is equal
to unity. As can be seen from the figures, for different values of A
analyzed in Table 1 the temperature of the gas and solid in the
front can be very different from each other, depending on the gas
and solid thermal–physical properties, which define heat conduc-
tion in the system, and on the convective heat transfer in the gas
phase.

Fig. 3 illustrates the influence of heat losses, which are defined
by coefficient B, to the environment on the front structure. As ex-
pected, increasing heat loss to the surroundings leads to a decrease
in the maximum temperature of the solid over the investigated
range of coefficient B, while the gas temperature changes very lit-
tle. The calculations show that in the case when �u < 0, the solid
matrix is not warmed up.

6. Conclusions

A theoretical analysis of low-velocity filtration combustion
based on a two-temperature formulation has been presented. The
reaction front is assumed to be small compared to that of the pre-
heat zone. As a result, a stationary analytical solution that consid-
ers the difference in physical properties of solid and gas, and heat
transport by convection and conduction in the gas phase has been
obtained for the first time.

The qualitative difference in the combustion front structure
in the cases when it moves downstream and upstream was
demonstrated. A variation of the Lewis number magnitude
(when it is different from one) was found that does not affect
the characteristics of the temperature field in the stationary
wave. However, we believe that when the Lewis number is dif-
ferent from one, stability of a combustion wave can become an
interesting and important property, which may lead to further
investigations.
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